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Abstract 

A fast matrix inversion procedure is suggested for matrices 
containing a large diagonal block as is the case in minimum- 
variance Fourier coefficient refinement. 

Since the MVFC refinement procedure was introduced by 
Sygusch (1977, 1985), it has been widely accepted as a 
powerful phase refinement tool for the isomorphous 
replacement method. However, for most applications, the 
cross terms of the least-squares normal matrix relating 
phases and heavy-atom parameters are ignored to avoid 
the high computational cost of inverting a huge matrix, 
thus compromising the rate of convergence and the 
accuracy in phase error estimation. The fact is that a full- 
matrix inversion can be a cost-effective and viable approach, 
if one takes advantage of the special property of the normal 
matrix. Here, we propose an alternative algorithm for this 
matrix inversion problem, which is also applicable to other 
cases where similar types of matrices are encountered, such 
as scaling and absorption corrections for area detector data 
(He & Carter, 1988). 

First let us give an anatomy for the problem at hand. 
The least-squares normal matrix for the MVFC procedure 
usually takes the form 

A,~n , 
A = (A~,~ A ~ )  

where m is the number of reflections to be phased, n is the 
number of heavy-atom parameters (usually m >> n), A~,~ is 
a diagonal square matrix of order m, A,~ is a full or 
block-diagonal square matrix of order n, and Am, (-- A,m,7-. 
superscript T represents transpose) is a rectangular matrix 
of order m by n, the elements of which are the cross terms 
relating phases and heavy-atom parameters and are usually 
ignored in the matrix inversion procedure. If we take a 
closer look at the fact that A~,~ is diagonal, and hence its 
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inverse is also a diagonal matrix with elements equal to the 
reciprocal of the corresponding elements in the original 
matrix, the problem becomes much easier to tackle. 

Let us denote the inverse of A as X and partition it 
accordingly. 

Xmn x(X= 
Since AX--I, we have 

Am,~X,~n + AmnX~ =0 (1) 

A,~X,, , ,  + Am,,X,,~ = I  (2) 

A,,mXm~ + A~X~, = I  (3) 

where 0 is a null matrix and I is the identity matrix. Solve 
(1) for Xmn by multiplying by (Atom)-' (note: not to be 
confused with X,,,,, !), leading to 

X .... = -(Atom )-lAmnXnn. (4) 

Substituting (4) into (3) and solving for X~,, one gets 

Xn,, = [A.~ - A.,~(Am., )-IA~. ] -t (5) 

Solving (2) for Xm~, one gets directly 

X ~  = (Am,,)- ' (I  -Am,X,m ). (6) 

With these relationships we can invert the matrix A in 
three steps: (i) calculate Xn, using (5) through matrix 
inversion, which is trivial for a small matrix; (ii) calculate 
Xm, using (4); (iii) calculate Xm,~ using (6). 

At this point, the full-matrix inversion of A is achieved. 
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